

# Green Hill Solar Farm EN010170

Environmental Statement
Appendix 10.10: Flood Risk Assessment
and Drainage Strategy
Annex I: Green Hill G

Prepared by: Arthian

Date: May 2025

Document Reference: APP/GH6.3.10.10

APFP Regulation 5(2)(e)



# Appendix 10.10: Annex I - Flood Risk Assessment and Drainage Strategy – Green Hill G

Prepared by: Georgia Hirst

For: Green Hill Solar Farm Ltd

Site: Green Hill G

Date: 20/05/2025

Document Ref: 313532

Issue-04

## **Quality Assurance**

### Issue Record

| Revision | Description                               | Date       | Author | Reviewer | Approver |
|----------|-------------------------------------------|------------|--------|----------|----------|
| 1.0      | First Issue                               | 04/09/2024 | GH     | LA       | JR       |
| 2.0      | Second Issue                              | 24/10/2024 | GH     | LA       | JR       |
| 3.0      | Third Issue                               | 08/04/2025 | GO     | LA       | JR       |
| 4.0      | Fourth Issue for submission of ES Chapter | 20/05/2025 | GO     | IR       | JR       |

#### **Staff Detail**

| Initials | Name              | Qualifications and Position | Signature |
|----------|-------------------|-----------------------------|-----------|
| GO       | Gabrielle O'Brien | BSc (Hons), Consultant      |           |
| LA       | Lucy Antell       | BSc (Hons), Senior          |           |
| IR       | Isobel Randall    | BSc (Hons), Senior          |           |
| JR       | Josh Rigby        | BSc (Hons), Manager         |           |

## Contents

| 1.   | Site  | Details4                                                                       |
|------|-------|--------------------------------------------------------------------------------|
| 1    | .1    | Site Location4                                                                 |
| 1.   | .2    | Existing Site Conditions                                                       |
| 1.   | .3    | Topography5                                                                    |
| 1    | .4    | Hydrology5                                                                     |
| 1    | .5    | Water Framework Directive Status6                                              |
| 1    | .6    | Geology6                                                                       |
| 1    | .7    | Hydrogeology8                                                                  |
| 1    | .8    | Proposed Site Conditions8                                                      |
| 2.   | Ass   | essment of Flood Risk9                                                         |
| 2    | .1    | Fluvial Flood Risk9                                                            |
| 2    | .2    | Surface Water Flood Risk                                                       |
| 2    | .3    | Groundwater Flood Risk                                                         |
| 2    | .4    | Sewer Flooding                                                                 |
| 2    | .5    | Reservoir and Canal Flooding12                                                 |
| 2    | .6    | Residual Flood Risks                                                           |
| 2    | .7    | Summary of Flood Risk and Mitigation                                           |
| 2    | .8    | Embedded Mitigation                                                            |
| 2    | .9    | Impact on Off-Site Flood Risk                                                  |
| 3.   | Con   | nclusions and Recommendations14                                                |
| 3    | .1    | Conclusions                                                                    |
| 3    | .2    | Recommendations                                                                |
| F    | igu   | ıres                                                                           |
| Figu | ire 1 | : Site Location Plan4                                                          |
| Figu | ire 2 | : LiDAR Plan5                                                                  |
| _    |       | : Superficial Deposits6                                                        |
|      |       | : Bedrock Deposits                                                             |
| _    |       | : EA's Flood Map for Planning9                                                 |
| Figu | ire 6 | : EA's Long-Term Flood Risk Map (Flood Risk from Surface Water)11              |
| Αı   | าท    | exes                                                                           |
| Anr  | nex A | - Ouse (Newport Pagnell to Rocton) Water Body Catchment Classification Summary |
| Anr  | ex B  | - Manning's Open Channel Flow Mapping 17                                       |
| Anr  | ex C  | - City of Milton Keynes Council LLFA Response                                  |

## 1. Site Details

The aim of this section of the report is to outline key environmental information associated with the baseline environment.

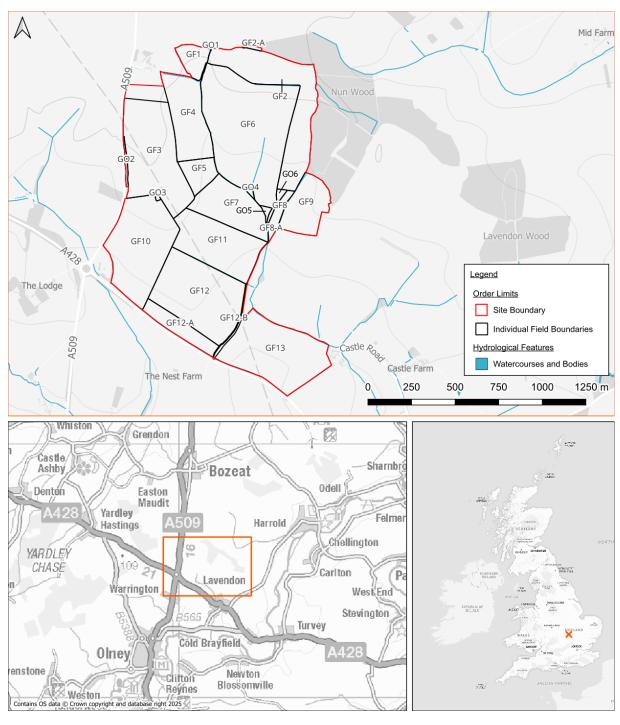



Figure 1: Site Location Plan

#### 1.1 Site Location

1.1.1 Green Hill G is situated northwest of Lavendon in the City of Milton Keynes. The Site is also situated north



Page 4 Issue-04

adjacent to the A428 and the A509 to the east of the Site. The National Grid Reference for Green Hill G is approximately 490380, 256120 in the north (GF1) to 490230, 254580 in the south (GF12-A), and 490070, 255450 in the west (GF3) to 491200, 255220 in the east (GF9).

#### 1.2 Existing Site Conditions

1.2.1 Online mapping (including Google Maps / Google Streetview imagery, accessed 08/08/2024)<sup>i</sup> shows that Greenhill G comprises agricultural / arable fields; However, there is a petrol station on the boarder of the southwest of the Site. Access and egress to the Site can be provided via the A428 to the south of the Site or alternatively the A509 to the west of the Site.

#### 1.3 Topography

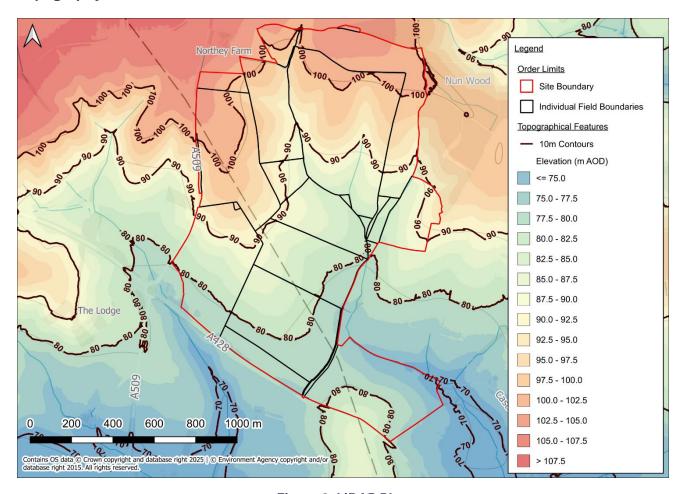



Figure 2: LiDAR Plan

1.3.1 Topographic levels to metres Above Ordnance Datum (m AOD) have been derived from a 1m resolution Environment Agency (EA) composite 'Light Detecting and Ranging' (LiDAR) Digital Terrain Model (DTM). A review of LiDAR ground elevation data shows that the Site slopes from approximately 103m AOD in the northwest to approximately 69m AOD in the southeast (Figure 2).

#### 1.4 Hydrology

1.4.1 The nearest watercourse is the River Great Ouse which is located approximately 1.8 km south of the Site



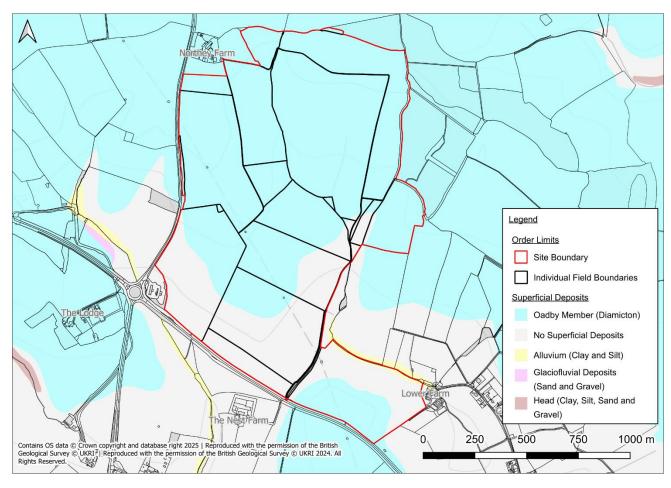
Page 5 Issue-04

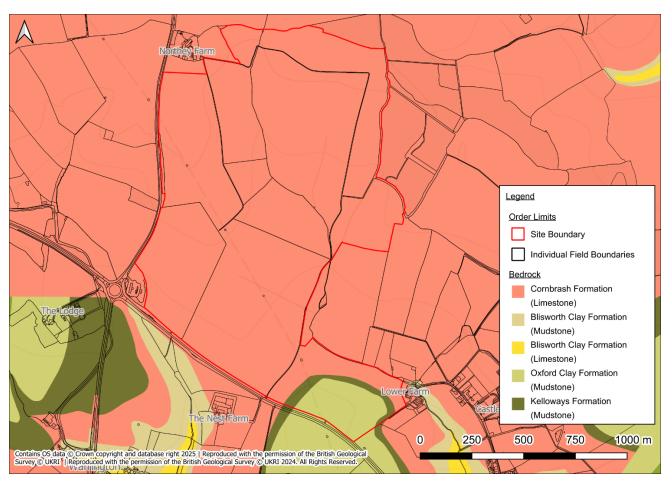
- at its closest point. The River Great Ouse flows in a North-easterly direction. Other watercourses in the area include several unnamed land drains located in the near vicinity of the Site.
- 1.4.2 Main Rivers fall under the responsibility of the EA, which holds permissive powers to manage flood risk. The EA is not responsible for routine maintenance, which remains the responsibility of riparian landowners unless otherwise undertaken by the EA.

#### 1.5 Water Framework Directive Status

- 1.5.1 Green Hill G is located within the Nene Catchment, specifically the Ouse (Newport Pagnell to Rocton)<sup>ii</sup>. The Ouse (Newport Pagnell to Rocton) Water Body catchment has a Cycle 3 Ecological status of Good in 2019 and 2022 and a Failing chemical status in 2019 (no data in 2022).
- 1.5.2 A summary of the Water Body Classification for the catchment is included as Annex A.

#### 1.6 Geology





Figure 3: Superficial Deposits

1.6.1 Reference to the British Geological Survey (BGS) online mapping<sup>iii</sup> (1:50,000 scale) indicates that the Site is underlain by superficial deposits of Oadby Member generally comprising Diamicton (Figure 3). The superficial deposits are identified as being underlain by Cornbrash Formation consisting of Limestone (Figure 4).



Page 6 Issue-04

1.6.2 The geological mapping is available at a scale of 1:50,000 and as such may not be accurate on a Site-specific basis.



**Figure 4: Bedrock Deposits** 

- 1.6.3 The closest historical BGS borehole record (BGS Ref: SP95SW29) is located approximately 165m east of GF13 (the Site) (NGR 491259, 253962). The borehole record indicates that the following geology was encountered:
  - Topsoil to 0.3m below ground level (bgl);
  - Bedded sandy and shelly limestone from 0.3m to 0.55m bgl;
  - Light brown clayey, silty, sandy limestone from 0.55m to 1.25m bgl;
  - Medium dense clayey sand with limestone gravel from 1.25m to 1.70m bgl; and
  - Dark greyish-brown sandy, shelly limestone from 1.70m to 2.10m bgl.
- 1.6.4 No water strikes have been recorded in this borehole.
- 1.6.5 BGS borehole (Ref: SP95SW29) is located to the east of parcel GF13. Due to the size of the Site the BGS borehole is unlikely to be representative for other fields across the Site.



Page 7 Issue-04

#### 1.7 Hydrogeology

- 1.7.1 According to the EA's Aquifer Designation data, obtained from MAGIC Map's online mapping<sup>iv</sup> [accessed 08/08/2024], the Oadby Member is classified as a Secondary Undifferentiated Aquifer.
- 1.7.2 The underlying Cornbrash Formation is described as a Secondary A and B Aquifer.
- 1.7.3 The EA's 'Source Protection Zones' data, obtained from MAGIC Map's online mapping [accessed 14/08/2024], indicates that the Site is not located within a Groundwater Source Protection Zone.

#### 1.8 Proposed Site Conditions

- 1.8.1 The Scheme at Green Hill G comprises a ground-mounted solar photovoltaic plant, associated electrical infrastructure, and an access road. An Outline Landscape and Ecological Management Plan (OLEMP) [EN010170/APP/GH7.4] has been developed to support the DCO application, and confirms that the majority of the Site will be used for solar panels, supporting infrastructure, and internal access. Peripheral areas will accommodate landscaped buffers, in line with the embedded mitigation set out in the ES.
- 1.8.2 A substation is proposed to the south-east of Field GF3.



Page 8 Issue-04

## 2. Assessment of Flood Risk

2.1.1 The aim of this section of the report is to assess and summarise the existing flood risk at Green Hill G.

#### 2.2 Fluvial Flood Risk

2.2.1 The nearest Main River is the River Great Ouse which is located approximately 1.8 km south of Green Hill G at its closest point. The River Great Ouse flows in a northeasterly direction. Other watercourses in the area include various unnamed land drains within the boundary or the near vicinity of Green Hill G.

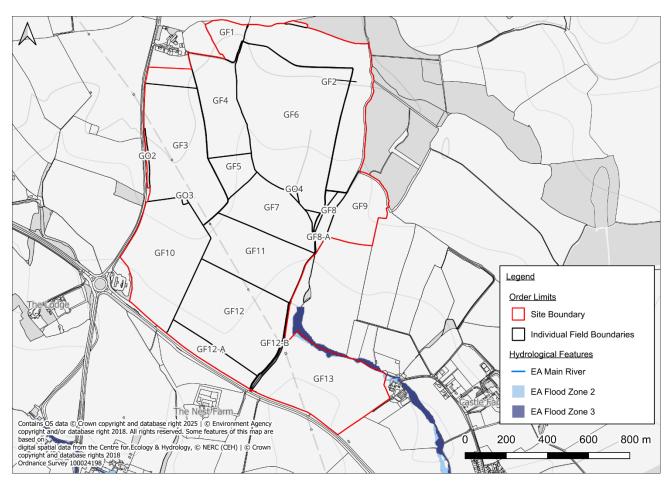



Figure 5: EA's Flood Map for Planning

- 2.2.2 Various land drainage ditches are located within and along the boundary of Green Hill G. Flows within the ditches are expected to flow generally in a southernly direction based on local topography. All of the land drains are classified as ordinary watercourses. These fall under the regulatory remit of the LLFA, which has permissive powers to manage flood risk but is not responsible for routine maintenance. Maintenance responsibilities lie with the riparian landowners. By contrast, Main Rivers fall under the responsibility of the EA.
- 2.2.3 Fluvial flooding could occur if the land drains overtopped their banks during or following an extreme rainfall event. According to the EA's Flood Map for Planning (updated March 2025), Green Hill G is largely situated in Flood Zone 1 (has less than a 1 in 1,000 annual probability of river or sea flooding), with the



Page 9 Issue-04

- exception of a small section of Field GF13 where the flood extents encroach the northern boundary, where Flood Zone extents are shown to encroach into the proposed panelled areas (Figure 5). However, these extents remain outside of any areas of proposed development in Green Hill G.
- 2.2.4 Green Hill G is situated at a minimum elevation of approximately 69 m AOD, the River Great Ouse is situated at approximately 41.5m AOD at its closest point and is therefore 34m below Green Hill G. Any out of channel flooding from the River Great Ouse is unlikely to flow towards Green Hill G.
- 2.2.5 The EA 'Historical Flood Map' indicates that Green Hill G has no recorded history of flooding either on the Site or in the immediate vicinity. However, this does not necessarily mean that the Site has never flooded, only that there is no documented record of such events.
- 2.2.6 There is no Site-specific information within third party reports relating to fluvial flood risk.
- 2.2.7 Green Hill G is also not located within a Flood Warning Area.
- 2.2.8 The Manning's open channel flow formula has been used to demonstrate and quantify potential fluvial flood risk to the Site during a 1% AEP +58%CC fluvial event. Cross sections of existing watercourses and the wider floodplain have been extracted from EA LiDAR data (flown Q1 2020) and used to inform the calculations. More detail on these calculations is provided in Annex B. The flood levels estimated by the calculations suggest that the flood extent is low and that flood extents on Site would be similar to or smaller than the EA surface water flood extents, which can be used as a conservative proxy for fluvial flood risk where appropriate. Surface water flooding is assessed in Section 2.4 below.
- 2.2.9 Green Hill G is therefore considered to be at **Low** risk of fluvial flooding, the proposed solar panels will be raised above surrounding ground levels with associated power infrastructure appropriately located out of the flood zone and waterproofed.

#### 2.3 Surface Water Flood Risk

- 2.3.1 The EA's National Flood Risk Assessment Mapping (NaFRA), known as the Long Term Flood Risk Map (Surface Water)<sup>vi</sup> was updated in January 2025.
- 2.3.2 The NaFRA mapping provides an updated view of surface water flooding across the Sites, however it should be noted that at the time of writing, the NaFRA mapping only delivers climate change insight up to the year 2060.
- 2.3.3 The previous EA Risk of Flooding from Surface Water (RoFSW) mapping indicates that Green Hill G is largely at a at Very Low risk of surface water flooding (less than 0.1% annual probability of flooding). The risk increases to Low (between a 1% and 0.1% annual probability), Medium (between a 3.3% and 1% annual probability) and High risk (greater than 3.3% annual probability) of flooding associated with the watercourses that run through Green Hill G.



Page 10 Issue-04

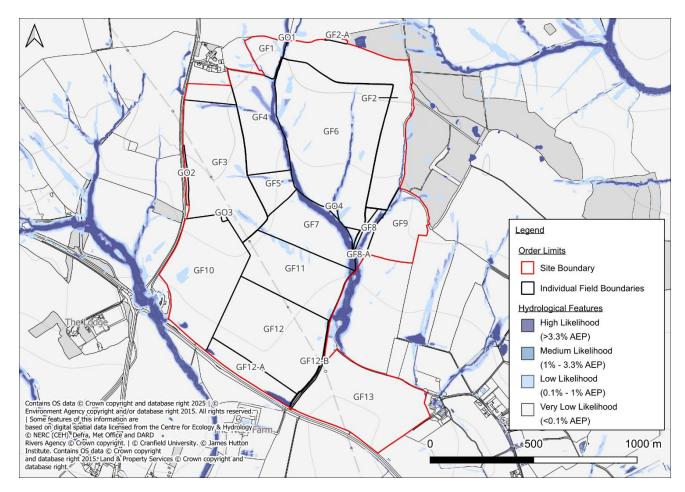



Figure 6: EA's Long-Term Flood Risk Map (Flood Risk from Surface Water)

- 2.3.4 It should be noted that the EA 'Flood Risk from Surface Water' map covering the Site is produced at a low resolution, which may not accurately represent Green Hill G's actual risk of surface water flooding.
- 2.3.5 There are no significant flow routes aside from those associated with the watercourse channel paths in the area that could direct surface water flooding toward Green Hill G.
- 2.3.6 The updated NaFRA mapping (Figure 6) has been assessed and indicates that Green Hill G surface water extents have reduced. As described in the fluvial section above, the surface water flooding extents largely correspond with the land drainage ditches which flow throughout Green Hill G.
- 2.3.7 The NaFRA surface water mapping indicates that the majority of Green Hill G has flood depths mainly below 0.3m, which is considered passable by vehicles and people. Only within the watercourses and the immediate areas surrounding them do depths exceed 0.3m, typically associated with topographic depressions.
- 2.3.8 There is no indication within relevant third party reports (listed in 'Sources of Information' on the Covering Report) to suggest that the Site has historically experienced surface water flooding.
- 2.3.9 Based on the above and considering the embedded mitigation as part of the design of the solar panels, the overall risk of surface water flooding at Green Hill G is considered to be **Low**. The proposed solar panels will be raised above surrounding ground levels and will be appropriately located out of the flood



Page 11 Issue-04

- zone and waterproofed thereby reducing the potential to be impacted in the event of surface water flooding.
- 2.3.10 The impact of the development on surface water risk is covered in Section 5.0 of the Covering Report to ensure that surface water risk is not exacerbated through appropriate SuDS measures.

#### 2.4 Groundwater Flood Risk

- 2.4.1 A description of the geology at Green Hill G is included within section 1.0.
- 2.4.2 There is no information within relevant third party reports (listed 'Sources of Information' on the Covering Report) to suggest that Green Hill G has experienced historical groundwater flooding.
- 2.4.3 No buildings other than the supporting unstaffed infrastructure and no basement levels are identified on plans which may otherwise be at increased risk from groundwater seepage.
- 2.4.4 It can therefore be concluded that the risk of groundwater flooding is **Low**.

#### 2.5 Sewer Flooding

2.5.1 No Site-specific incidents of sewer flooding have been identified from relevant third-party reports. On the basis of the Site's rural setting the presence of sewerage infrastructure is unlikely. Utility records have been checked and no sewers are identified within the Green Hill G. It can therefore be concluded that the risk of sewer flooding is Low.

#### 2.6 Reservoir and Canal Flooding

- 2.6.1 There are no canals within the vicinity of Green Hill G, therefore there is negligible associated flood risk.
- 2.6.2 The EA 'Flood Risk from Reservoirs' map shows that Green Hill G is not at risk of flooding from reservoirs.
- 2.6.3 It can therefore be concluded that there is a **Negligible** risk of flooding from artificial sources.

#### 2.7 Residual Flood Risks

- 2.7.1 A residual risk is an exceedance event, such as the greater than 1 in 1000 year (<0.1% AEP) flood event that would overtop the River Great Ouse and potentially impact the Site. As the probability of a 1 in 1000 year flood event occurring is <0.1% in any given year, the probability is low and, therefore, no further mitigation beyond what is proposed is required.
- 2.7.2 In the event of the defences failing or an exceedance event occurring, the residual risk to people working within the Site can be managed through the implementation of an appropriate Site management plan, which recognises the residual risks and details what action is to be taken by staff in the event of a flood to put occupants in a place of safety.

#### 2.8 Summary of Flood Risk and Mitigation

2.8.1 It can be concluded that the risk to Green Hill B from all sources of flooding is **Negligible to Low**, however it would be prudent to include the below mitigation measures.



Page 12 Issue-04

#### 2.9 Embedded Mitigation

2.9.1 Embedded Mitigation is detailed in Section 3.2 of the covering report.

#### 2.10 Impact on Off-Site Flood Risk

- 2.10.1 The solar panels will be mounted on frames and raised above ground level allowing flood water to flow freely underneath, and a 9 m buffer around watercourses maintained. Therefore, there will be no loss of floodplain volume as a result of the Scheme and no increase in flood risk elsewhere. It should also be noted that further modelling is being undertaken separate to the DCO submission, to assess the potential impacts on the village of Lavendon which is located south-east of the site. Given the above and the embedded mitigation detailed, it is not anticipated that flood risk will be increased in Lavendon.
- 2.10.2 The supporting infrastructure is insignificant in size and will not increase flood risk elsewhere.
- 2.10.3 Surface water management has been considered in Section 5.0 of the Covering Report.



Issue-04

## 3. Conclusions and Recommendations

#### 3.1 Conclusions

3.1.1 The Scheme is for a ground mounted solar farm and associated infrastructure and access roads.

#### Flood Risk

- 3.1.2 Green Hill G is located within Flood Zone 1 on the Environment Agency (EA) 'Flood Map for Planning (Rivers and Sea)' an area considered to have the lowest probability of fluvial and tidal flooding.
- 3.1.3 The risk of flooding from all sources has been assessed and the flood risk is considered to be **Negligible to Low** and therefore does not require Site-specific mitigation measures.
- 3.1.4 The solar panels will be mounted on raised frames and therefore raised above surrounding ground level allowing flood water to flow freely underneath. Therefore, there will be no loss of floodplain volume as a result of the Scheme.

#### 3.2 Recommendations

3.2.1 Embedded Mitigation is detailed in section 3.2 of the covering report.



e 14 Issue-04

## Annex A - Ouse (Newport Pagnell to Rocton) Water Body Catchment Classification Summary

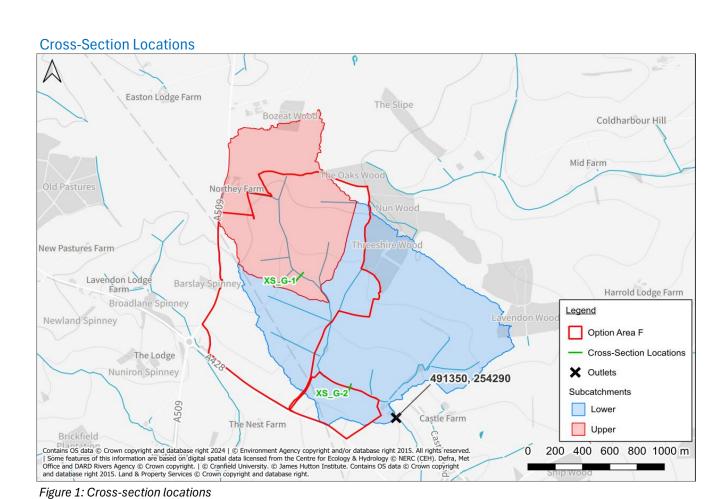
|                                        |                  | 1                |                     |                  |      |                    |
|----------------------------------------|------------------|------------------|---------------------|------------------|------|--------------------|
| Classification Item                    |                  | sification       | 2019 Classification |                  |      | Cycle 3 Objectives |
|                                        | Cycle 2          | Cycle 3          | Cycle 3             | Status           | Year | Reasons            |
| Ecological                             | Moderate         | Moderate         | Moderate            | Moderate         | 2022 |                    |
| Biological Quality Elements            | Good             | Good             | Good                | Good             | 2022 |                    |
| Invertebrates                          | Good             | High             | Good                | Good             | 2022 |                    |
| Macrophytes and Phytobenthos Combined  | N/A              | N/A              | High                | High             | 2022 |                    |
| Physio-Chemical Quality Elements       | Moderate         | Moderate         | Poor                | Poor             | 2022 |                    |
| Acid Neutralising Capacity             | N/A              | N/A              | Moderate            | Moderate         | 2022 |                    |
| Ammonia (Phys-Chem)                    | High             | High             | High                | High             | 2022 |                    |
| Dissolved Oxygen                       | High             | High             | High                | High             | 2022 |                    |
| Phosphate                              | Poor             | Poor             | Good                | Good             | 2022 |                    |
| Temperature                            | High             | High             | High                | Good             | 2022 |                    |
| рН                                     | High             | High             | High                | Good             | 2022 |                    |
| Hydromorphological Supporting Elements | Supports Good    | Supports Good    | Supports Good       | Supports Good    | 2022 |                    |
| Supporting Elements (surface Water)    | Moderate         | Moderate         | Moderate            | Moderate         | 2022 |                    |
| Mitigation Measures Assessment         | Moderate or less | Moderate or less | Moderate or less    | Moderate or less | 2022 |                    |
| Specific Pollutants                    | High             | High             | High                | High             | 2022 |                    |
| Iron                                   | High             | High             | High                | High             | 2022 |                    |
| Maganese                               | High             | High             | High                | High             | 2022 |                    |
| Chemical                               | Good             | Fail             | Fail                | N/A              | 2022 |                    |
| Priority Hazardous Substances          | Good             | Fail             | Fail                | N/A              | 2022 |                    |
| Benzo(a)pyrene                         | N/A              | Good             | Good                | N/A              | 2022 |                    |
| Dioxins and dioxin-like compounds      | N/A              | Good             | Good                | N/A              | 2022 |                    |
| Heptachlor and cis-Heptachlor Epoxide  | Good             | Good             | Good                | N/A              | 2022 |                    |
| Hexachlorobenzene                      | Good             | Good             | Good                | N/A              | 2022 |                    |
| Hexachlorobutadiene                    | Good             | Good             | Good                | N/A              | 2022 |                    |
| Mercury and Its Compounds              | N/A              | Good             | Good                | N/A              | 2022 |                    |
| Perfluorooctane sulphonate (PFOS)      | N/A              | Good             | Good                | N/A              | 2022 |                    |
| Polybrominated diphenyl ethers (PBDE)  | N/A              | N/A              | Good                | N/A              | 2022 |                    |
| Priority substances                    | Good             | Good             | Fail                | N/A              | 2022 |                    |
| Cypermethrin (Priority)                | N/A              | Good             | Good                | N/A              | 2022 |                    |
| Fluoranthene                           | N/A              | Good             | Good                | N/A              | 2022 |                    |
| Other Pollutants                       | N/A              | N/A              | N/A                 | N/A              | 2022 |                    |





## 313532 Green Hill Solar Farm

# Manning's Open Channel Flow Calculation - Option Area G


### Methodology

Cross-sections of the channel and floodplain were extracted from Environment Agency (EA) LiDAR DTM data (flown Q1 2020) at the locations shown in Figure 1. These cross-sections can be considered representative of the channel and general floodplain adjacent to the site and at the location of the proposed development. Due to the nature of LiDAR, volume and conveyance of the main channels will likely be underestimated, providing a conservative assessment of fluvial flood risk.

The cross-sections were imported into Flood Modeller and the "tabulate cross section properties" tool was utilised to establish the level-flow relationship for the channel and wider floodplain. This tool utilises the Manning's open channel flow equation. Manning's 'n' roughness was set to 0.03s/m<sup>1/3</sup> for the channel and 0.04s/m<sup>1/3</sup> for the floodplain based on aerial imagery. The bed slope was set for each cross-section based on underlying LiDAR. Catchment descriptors for the catchments upstream of the outlet locations shown in Figure 1 were imported into ReFH2 and used to provide an estimate of flows within the channel during the 1% AEP +58%CC event. These flows were scaled by area as required.

Within this excel workbook, the xlookup function has been used along with the Flood Modeller level-flow relationship for the cross-sections to determine the equivalent water level for the calculated flow, rounding up where a direct match is not found. To provide additional confidence in the assessment, a second xlookup has been used to determine the estimated flood level should an additional 50% flow be applied.

Cross-sections have been located at suitable locations throughout the proposed development. Whilst it is acknowledged that the Manning's open channel flow equation used to determine the level-flow relationship does not constitute detailed hydraulic modelling, the calculation can still be considered suitable to demonstrate the scale of the changes in water level that can be expected when considering a +58% uplift in flows (Upper and Bedford Ouse Catchment, 2080's higher allowance).



### Calculated Flows and Levels

| Cross-Section | ReFH2 Peak Flow - 1% AEP +58%CC<br>(m³/s) | Equivalent Flood Level (m AOD) | Sensitivity Flow - ReFH2 +50% (m³/s) | Equivalent Flood Level (m AOD) |
|---------------|-------------------------------------------|--------------------------------|--------------------------------------|--------------------------------|
| G-1           | 1.62                                      | 84.63                          | 2.43                                 | 84.65<br>(+19mm)               |
| G-2           | 4.56                                      | 72.82                          | 6.84                                 | 72.92<br>(+106mm)              |

## Tabulated Cross-Section Properties | G-1

(Calculated by Flood Modeller)

| Node | Flow (m <sup>3</sup> /s) | Stage (m AOD)   | Depth | Velocity | Froude no.  | Area   | Conveyance | Width  | W Perim. | Slope  |
|------|--------------------------|-----------------|-------|----------|-------------|--------|------------|--------|----------|--------|
| Node | Ftow (111 75)            | Stage (III AOD) | (m)   | (m/s)    | Froduce no. | (m²)   | (m³/s)     | (m)    | (m)      | Stope  |
| G-1  | 0.000                    | 84.326          | 0.000 | 0.000    | 0.000       | 0.000  | 0.000      | 0.000  | 0.000    | 0.0155 |
| G-1  | 0.001                    | 84.349          | 0.023 | 0.157    | 0.470       | 0.007  | 0.009      | 0.650  | 0.652    | 0.0155 |
| G-1  | 0.007                    | 84.371          | 0.045 | 0.249    | 0.527       | 0.029  | 0.059      | 1.300  | 1.303    | 0.0155 |
| G-1  | 0.022                    | 84.394          | 0.068 | 0.326    | 0.564       | 0.066  | 0.174      | 1.950  | 1.955    | 0.0155 |
| G-1  | 0.045                    | 84.415          | 0.089 | 0.408    | 0.597       | 0.111  | 0.365      | 2.331  | 2.339    | 0.0155 |
| G-1  | 0.079                    | 84.436          | 0.110 | 0.478    | 0.621       | 0.164  | 0.631      | 2.712  | 2.722    | 0.0155 |
| G-1  | 0.122                    | 84.457          | 0.131 | 0.541    | 0.640       | 0.225  | 0.979      | 3.093  | 3.106    | 0.0155 |
| G-1  | 0.176                    | 84.478          | 0.152 | 0.598    | 0.656       | 0.294  | 1.413      | 3.474  | 3.489    | 0.0155 |
| G-1  | 0.202                    | 84.488          | 0.162 | 0.612    | 0.660       | 0.330  | 1.624      | 3.771  | 3.787    | 0.0155 |
| G-1  | 0.232                    | 84.498          | 0.172 | 0.619    | 0.737       | 0.375  | 1.867      | 5.216  | 5.232    | 0.0155 |
| G-1  | 0.258                    | 84.505          | 0.179 | 0.613    | 0.841       | 0.421  | 2.072      | 7.782  | 7.800    | 0.0155 |
| G-1  | 0.370                    | 84.526          | 0.200 | 0.611    | 0.784       | 0.605  | 2.971      | 9.780  | 9.799    | 0.0155 |
| G-1  | 0.465                    | 84.539          | 0.213 | 0.628    | 0.770       | 0.740  | 3.734      | 10.913 | 10.934   | 0.0155 |
| G-1  | 0.499                    | 84.543          | 0.217 | 0.636    | 0.769       | 0.784  | 4.006      | 11.248 | 11.270   | 0.0155 |
| G-1  | 0.506                    | 84.544          | 0.218 | 0.637    | 0.771       | 0.795  | 4.068      | 11.436 | 11.458   | 0.0155 |
| G-1  | 0.592                    | 84.553          | 0.227 | 0.653    | 0.800       | 0.907  | 4.760      | 13.342 | 13.365   | 0.0155 |
| G-1  | 0.880                    | 84.575          | 0.249 | 0.717    | 0.821       | 1.227  | 7.073      | 15.794 | 15.820   | 0.0155 |
| G-1  | 1.159                    | 84.592          | 0.266 | 0.772    | 0.817       | 1.502  | 9.317      | 16.484 | 16.511   | 0.0155 |
| G-1  | 1.548                    | 84.611          | 0.285 | 0.848    | 0.827       | 1.826  | 12.440     | 17.048 | 17.078   | 0.0155 |
| G-1  | 1.993                    | 84.631          | 0.305 | 0.922    | 0.841       | 2.161  | 16.014     | 17.613 | 17.645   | 0.0155 |
| G-1  | 2.492                    | 84.650          | 0.324 | 0.994    | 0.855       | 2.507  | 20.025     | 18.178 | 18.211   | 0.0155 |
| G-1  | 3.003                    | 84.668          | 0.342 | 1.058    | 0.868       | 2.839  | 24.131     | 18.735 | 18.770   | 0.0155 |
| G-1  | 3.560                    | 84.686          | 0.360 | 1.119    | 0.880       | 3.181  | 28.611     | 19.292 | 19.330   | 0.0155 |
| G-1  | 4.164                    | 84.704          | 0.378 | 1.178    | 0.892       | 3.534  | 33.461     | 19.850 | 19.888   | 0.0155 |
| G-1  | 4.774                    | 84.721          | 0.395 | 1.232    | 0.902       | 3.876  | 38.361     | 20.400 | 20.441   | 0.0155 |
| G-1  | 5.425                    | 84.738          | 0.412 | 1.283    | 0.912       | 4.227  | 43.595     | 20.951 | 20.994   | 0.0155 |
| G-1  | 6.118                    | 84.755          | 0.429 | 1.334    | 0.922       | 4.588  | 49.165     | 21.502 | 21.546   | 0.0155 |
| G-1  | 6.476                    | 84.764          | 0.438 | 1.354    | 0.926       | 4.784  | 52.037     | 21.960 | 22.005   | 0.0155 |
| G-1  | 7.395                    | 84.785          | 0.459 | 1.404    | 0.957       | 5.266  | 59.426     | 23.991 | 24.037   | 0.0155 |
| G-1  | 7.650                    | 84.790          | 0.464 | 1.420    | 0.964       | 5.387  | 61.471     | 24.345 | 24.390   | 0.0155 |
| G-1  | 8.225                    | 84.801          | 0.475 | 1.452    | 0.992       | 5.663  | 66.097     | 25.901 | 25.946   | 0.0155 |
| G-1  | 9.281                    | 84.820          | 0.494 | 1.505    | 1.005       | 6.165  | 74.581     | 26.934 | 26.981   | 0.0155 |
| G-1  | 10.409                   | 84.839          | 0.513 | 1.557    | 1.016       | 6.687  | 83.647     | 27.968 | 28.016   | 0.0155 |
| G-1  | 10.457                   | 84.840          | 0.514 | 1.557    | 1.039       | 6.715  | 84.027     | 29.334 | 29.382   | 0.0155 |
| G-1  | 11.481                   | 84.856          | 0.530 | 1.597    | 1.041       | 7.190  | 92.256     | 29.960 | 30.008   | 0.0155 |
| G-1  | 12.937                   | 84.878          | 0.552 | 1.649    | 1.044       | 7.843  | 103.959    | 30.831 | 30.881   | 0.0155 |
| G-1  | 14.495                   | 84.899          | 0.573 | 1.702    | 1.049       | 8.516  | 116.477    | 31.703 | 31.753   | 0.0155 |
| G-1  | 15.100                   | 84.907          | 0.581 | 1.721    | 1.069       | 8.775  | 121.344    | 33.202 | 33.253   | 0.0155 |
| G-1  | 15.332                   | 84.910          | 0.584 | 1.727    | 1.076       | 8.876  | 123.202    | 33.778 | 33.829   | 0.0155 |
| G-1  | 16.278                   | 84.922          | 0.596 | 1.751    | 1.100       | 9.294  | 130.808    | 35.959 | 36.011   | 0.0155 |
| G-1  | 16.665                   | 84.938          | 0.612 | 1.691    | 1.042       | 9.857  | 133.919    | 36.718 | 36.771   | 0.0155 |
| G-1  | 18.052                   | 84.953          | 0.627 | 1.730    | 1.047       | 10.432 | 145.059    | 37.477 | 37.531   | 0.0155 |
|      |                          |                 |       |          |             |        |            |        |          |        |



| Node | Flow (m <sup>3</sup> /s) | Stage (m AOD) | Depth | Velocity | Froude no. | Area              | Conveyance | Width  | W Perim. | Slope  |
|------|--------------------------|---------------|-------|----------|------------|-------------------|------------|--------|----------|--------|
|      | · · · · ·                |               | (m)   | (m/s)    |            | (m <sup>2</sup> ) | (m³/s)     | (m)    | (m)      |        |
| G-1  | 18.143                   | 84.954        | 0.628 | 1.733    | 1.066      | 10.471            | 145.795    | 38.905 | 38.959   | 0.0155 |
| G-1  | 18.458                   | 84.962        | 0.636 | 1.712    | 1.044      | 10.784            | 148.324    | 39.357 | 39.411   | 0.0155 |
| G-1  | 20.036                   | 84.979        | 0.653 | 1.751    | 1.050      | 11.441            | 161.003    | 40.331 | 40.386   | 0.0155 |
| G-1  | 21.688                   | 84.995        | 0.669 | 1.790    | 1.055      | 12.115            | 174.278    | 41.305 | 41.360   | 0.0155 |
| G-1  | 23.082                   | 85.011        | 0.685 | 1.805    | 1.058      | 12.790            | 185.484    | 43.084 | 43.139   | 0.0155 |
| G-1  | 23.163                   | 85.012        | 0.686 | 1.805    | 1.058      | 12.833            | 186.131    | 43.223 | 43.278   | 0.0155 |
| G-1  | 24.093                   | 85.023        | 0.697 | 1.809    | 1.058      | 13.316            | 193.607    | 44.630 | 44.686   | 0.0155 |
| G-1  | 26.471                   | 85.045        | 0.719 | 1.849    | 1.062      | 14.316            | 212.719    | 46.322 | 46.378   | 0.0155 |
| G-1  | 27.994                   | 85.058        | 0.732 | 1.876    | 1.065      | 14.924            | 224.953    | 47.199 | 47.256   | 0.0155 |
| G-1  | 29.569                   | 85.071        | 0.745 | 1.902    | 1.068      | 15.544            | 237.615    | 48.076 | 48.134   | 0.0155 |
| G-1  | 30.677                   | 85.080        | 0.754 | 1.920    | 1.070      | 15.979            | 246.517    | 48.722 | 48.780   | 0.0155 |
| G-1  | 31.430                   | 85.086        | 0.760 | 1.931    | 1.088      | 16.277            | 252.567    | 50.659 | 50.718   | 0.0155 |
| G-1  | 32.586                   | 85.095        | 0.769 | 1.946    | 1.101      | 16.742            | 261.854    | 52.554 | 52.613   | 0.0155 |
| G-1  | 32.203                   | 85.096        | 0.770 | 1.917    | 1.098      | 16.795            | 258.778    | 54.056 | 54.115   | 0.0155 |
| G-1  | 32.496                   | 85.098        | 0.772 | 1.922    | 1.101      | 16.904            | 261.130    | 54.411 | 54.470   | 0.0155 |
| G-1  | 34.516                   | 85.115        | 0.789 | 1.938    | 1.090      | 17.808            | 277.362    | 55.230 | 55.290   | 0.0155 |
| G-1  | 37.104                   | 85.131        | 0.805 | 1.981    | 1.094      | 18.726            | 298.162    | 56.049 | 56.109   | 0.0155 |
| G-1  | 40.887                   | 85.154        | 0.828 | 2.042    | 1.101      | 20.028            | 328.561    | 57.117 | 57.179   | 0.0155 |
| G-1  | 42.838                   | 85.167        | 0.841 | 2.065    | 1.103      | 20.748            | 344.237    | 58.081 | 58.143   | 0.0155 |
| G-1  | 44.846                   | 85.179        | 0.853 | 2.088    | 1.105      | 21.480            | 360.376    | 59.045 | 59.107   | 0.0155 |
| G-1  | 46.562                   | 85.189        | 0.863 | 2.109    | 1.107      | 22.073            | 374.168    | 59.685 | 59.748   | 0.0155 |
| G-1  | 50.648                   | 85.212        | 0.886 | 2.159    | 1.113      | 23.463            | 407.001    | 61.158 | 61.221   | 0.0155 |
| G-1  | 54.013                   | 85.229        | 0.904 | 2.201    | 1.117      | 24.541            | 434.043    | 62.056 | 62.120   | 0.0155 |
| G-1  | 57.491                   | 85.247        | 0.921 | 2.243    | 1.122      | 25.635            | 461.991    | 62.954 | 63.019   | 0.0155 |
| G-1  | 60.021                   | 85.260        | 0.934 | 2.268    | 1.127      | 26.461            | 482.320    | 64.049 | 64.114   | 0.0155 |
| G-1  | 62.183                   | 85.271        | 0.945 | 2.289    | 1.130      | 27.171            | 499.695    | 65.028 | 65.094   | 0.0155 |
| G-1  | 65.294                   | 85.286        | 0.960 | 2.319    | 1.135      | 28.154            | 524.688    | 66.099 | 66.164   | 0.0155 |
| G-1  | 68.493                   | 85.301        | 0.975 | 2.349    | 1.139      | 29.153            | 550.398    | 67.169 | 67.235   | 0.0155 |
| G-1  | 69.579                   | 85.306        | 0.980 | 2.359    | 1.140      | 29.490            | 559.124    | 67.525 | 67.591   | 0.0155 |
| G-1  | 72.274                   | 85.318        | 0.993 | 2.382    | 1.144      | 30.341            | 580.782    | 68.609 | 68.676   | 0.0155 |
| G-1  | 75.038                   | 85.331        | 1.005 | 2.405    | 1.147      | 31.205            | 602.995    | 69.694 | 69.760   | 0.0155 |
| G-1  | 75.553                   | 85.335        | 1.009 | 2.400    | 1.152      | 31.487            | 607.131    | 71.172 | 71.239   | 0.0155 |
| G-1  | 77.183                   | 85.342        | 1.016 | 2.413    | 1.154      | 31.987            | 620.226    | 71.716 | 71.784   | 0.0155 |
| G-1  | 82.467                   | 85.365        | 1.039 | 2.450    | 1.158      | 33.660            | 662.691    | 73.782 | 73.849   | 0.0155 |
| G-1  | 84.193                   | 85.372        | 1.046 | 2.463    | 1.159      | 34.178            | 676.560    | 74.216 | 74.283   | 0.0155 |
| G-1  | 89.568                   | 85.393        | 1.067 | 2.508    | 1.162      | 35.710            | 719.755    | 75.239 | 75.308   | 0.0155 |
| G-1  | 95.122                   | 85.413        | 1.087 | 2.553    | 1.166      | 37.263            | 764.381    | 76.262 | 76.332   | 0.0155 |
| G-1  | 99.553                   | 85.428        | 1.103 | 2.589    | 1.169      | 38.450            | 799.993    | 76.906 | 76.977   | 0.0155 |
| G-1  | 104.088                  | 85.444        | 1.118 | 2.625    | 1.172      | 39.647            | 836.436    | 77.551 | 77.622   | 0.0155 |
| G-1  | 111.167                  | 85.468        | 1.142 | 2.677    | 1.178      | 41.524            | 893.316    | 78.842 | 78.914   | 0.0155 |
| G-1  | 118.422                  | 85.490        | 1.164 | 2.737    | 1.184      | 43.265            | 951.620    | 79.486 | 79.559   | 0.0155 |
| G-1  | 125.156                  | 85.510        | 1.184 | 2.790    | 1.191      | 44.862            | 1005.734   | 80.159 | 80.232   | 0.0155 |
| G-1  | 132.072                  | 85.530        | 1.204 | 2.842    | 1.197      | 46.472            | 1061.305   | 80.833 | 80.906   | 0.0155 |
|      |                          |               |       |          |            |                   |            |        |          |        |

## Tabulated Cross-Section Properties | G-2

(Calculated by Flood Modeller)

| Node       | Flow (m <sup>3</sup> /s) | Stage (m AOD) | Depth | Velocity | Froude no. | Area           | Conveyance | Width  | W Perim. | Slope  |
|------------|--------------------------|---------------|-------|----------|------------|----------------|------------|--------|----------|--------|
|            |                          |               | (m)   | (m/s)    |            | (m²)           | (m³/s)     | (m)    | (m)      |        |
| G-2        | 0.000                    | 72.043        | 0.000 | 0.000    | 0.000      | 0.000          | 0.000      | 0.000  | 0.000    | 0.0159 |
| G-2        | 0.003                    | 72.079        | 0.036 | 0.218    | 0.515      | 0.013          | 0.023      | 0.723  | 0.727    | 0.0159 |
| G-2        | 0.018                    | 72.116        | 0.073 | 0.346    | 0.578      | 0.053          | 0.144      | 1.445  | 1.455    | 0.0159 |
| G-2        | 0.050                    | 72.148        | 0.105 | 0.482    | 0.626      | 0.103          | 0.394      | 1.710  | 1.728    | 0.0159 |
| G-2        | 0.096                    | 72.180        | 0.137 | 0.591    | 0.658      | 0.162          | 0.760      | 1.975  | 2.001    | 0.0159 |
| G-2        | 0.157                    | 72.212        | 0.169 | 0.684    | 0.682      | 0.230          | 1.245      | 2.240  | 2.274    | 0.0159 |
| G-2        | 0.234                    | 72.244        | 0.201 | 0.767    | 0.701      | 0.306          | 1.858      | 2.505  | 2.547    | 0.0159 |
| G-2        | 0.352                    | 72.282        | 0.239 | 0.871    | 0.723      | 0.404          | 2.790      | 2.730  | 2.784    | 0.0159 |
| G-2        | 0.493                    | 72.319        | 0.276 | 0.965    | 0.741      | 0.511          | 3.909      | 2.955  | 3.022    | 0.0159 |
| G-2        | 0.659                    | 72.357        | 0.314 | 1.051    | 0.756      | 0.627          | 5.220      | 3.181  | 3.260    | 0.0159 |
| G-2        | 0.849                    | 72.395        | 0.352 | 1.131    | 0.769      | 0.751          | 6.730      | 3.406  | 3.497    | 0.0159 |
| G-2        | 1.066                    | 72.432        | 0.389 | 1.206    | 0.781      | 0.883          | 8.446      | 3.631  | 3.735    | 0.0159 |
| G-2        | 1.309                    | 72.470        | 0.427 | 1.278    | 0.792      | 1.024          | 10.376     | 3.857  | 3.973    | 0.0159 |
| G-2        | 1.512                    | 72.502        | 0.459 | 1.310    | 0.797      | 1.154          | 11.986     | 4.187  | 4.310    | 0.0159 |
| G-2        | 1.741                    | 72.535        | 0.492 | 1.345    | 0.802      | 1.294          | 13.801     | 4.518  | 4.648    | 0.0159 |
| G-2        | 1.997                    | 72.567        | 0.524 | 1.382    | 0.808      | 1.445          | 15.829     | 4.848  | 4.986    | 0.0159 |
| G-2        | 2.281                    | 72.599        | 0.556 | 1.419    | 0.813      | 1.607          | 18.081     | 5.179  | 5.324    | 0.0159 |
| G-2        | 2.446                    | 72.616        | 0.573 | 1.441    | 0.817      | 1.697          | 19.383     | 5.341  | 5.492    | 0.0159 |
| G-2        | 2.727                    | 72.647        | 0.604 | 1.461    | 0.820      | 1.867          | 21.614     | 5.766  | 5.924    | 0.0159 |
| G-2        | 3.041                    | 72.677        | 0.634 | 1.483    | 0.823      | 2.050          | 24.107     | 6.191  | 6.356    | 0.0159 |
| G-2        | 3.390                    | 72.708        | 0.665 | 1.509    | 0.827      | 2.247          | 26.872     | 6.616  | 6.789    | 0.0159 |
| G-2        | 3.870                    | 72.744        | 0.701 | 1.551    | 0.833      | 2.495          | 30.670     | 7.053  | 7.236    | 0.0159 |
| G-2        | 4.397                    | 72.781        | 0.738 | 1.594    | 0.838      | 2.759          | 34.852     | 7.491  | 7.683    | 0.0159 |
| G-2        | 4.975                    | 72.817        | 0.774 | 1.637    | 0.844      | 3.039          | 39.432     | 7.928  | 8.129    | 0.0159 |
| G-2        | 5.626                    | 72.852        | 0.809 | 1.692    | 0.851      | 3.325          | 44.593     | 8.252  | 8.463    | 0.0159 |
| G-2        | 6.324                    | 72.888        | 0.845 | 1.746    | 0.858      | 3.622          | 50.124     | 8.575  | 8.797    | 0.0159 |
| G-2        | 7.070                    | 72.923        | 0.880 | 1.798    | 0.864      | 3.931          | 56.036     | 8.899  | 9.130    | 0.0159 |
| G-2        | 7.114                    | 72.925        | 0.882 | 1.801    | 0.923      | 3.950          | 56.384     | 10.171 | 10.403   | 0.0159 |
| G-2        | 7.315                    | 72.934        | 0.891 | 1.807    | 0.973      | 4.048          | 57.979     | 11.503 | 11.737   | 0.0159 |
| G-2        | 7.693                    | 72.950        | 0.907 | 1.813    | 1.012      | 4.244          | 60.974     | 12.981 | 13.220   | 0.0159 |
| G-2        | 7.943                    | 72.960        | 0.917 | 1.815    | 1.028      | 4.377          | 62.956     | 13.783 | 14.025   | 0.0159 |
| G-2        | 8.259                    | 72.972        | 0.929 | 1.816    | 1.035      | 4.547          | 65.460     | 14.472 | 14.718   | 0.0159 |
| G-2        | 8.670                    | 72.985        | 0.942 | 1.829    | 1.050      | 4.741          | 68.723     | 15.324 | 15.574   | 0.0159 |
| G-2        | 9.848                    | 73.019        | 0.976 | 1.861    | 1.067      | 5.291          | 78.055     | 17.044 | 17.304   | 0.0159 |
| G-2        | 10.759                   | 73.043        | 1.000 | 1.882    | 1.081      | 5.717          | 85.278     | 18.497 | 18.764   | 0.0159 |
| G-2        | 11.198                   | 73.054        | 1.011 | 1.889    | 1.109      | 5.929          | 88.757     | 20.059 | 20.329   | 0.0159 |
| G-2        | 11.198                   | 73.054        | 1.011 | 1.889    | 1.109      | 5.929          | 88.757     | 20.059 | 20.329   | 0.0159 |
| G-2        | 11.321                   | 73.057        | 1.014 | 1.890    | 1.111      | 5.990          | 89.734     | 20.288 | 20.559   | 0.0159 |
|            | 12.977                   | 73.092        | 1.014 | 1.929    |            |                | 102.852    | 21.905 |          | 0.0159 |
| G-2<br>G-2 | 14.007                   | 73.112        | 1.049 | 1.929    | 1.111      | 6.728<br>7.176 | 111.023    | 22.859 | 22.177   | 0.0159 |
| G-2<br>G-2 | 14.007                   | 73.112        |       | 1.952    | 1.112      | 7.176          |            | 23.600 |          | 0.0159 |
|            |                          |               | 1.085 | 2.004    |            |                | 117.940    |        | 23.874   | 0.0159 |
| G-2        | 16.260                   | 73.152        | 1.109 |          | 1.112      | 8.113          | 128.881    | 24.475 | 24.751   |        |
| G-2        | 17.733                   | 73.175        | 1.132 | 2.039    | 1.111      | 8.698          | 140.552    | 25.350 | 25.626   | 0.0159 |
| G-2        | 18.055                   | 73.180        | 1.137 | 2.046    | 1.112      | 8.825          | 143.104    | 25.588 | 25.864   | 0.0159 |
| G-2        | 19.154                   | 73.198        | 1.155 | 2.060    | 1.123      | 9.300          | 151.817    | 27.138 | 27.415   | 0.0159 |
| G-2        | 20.271                   | 73.214        | 1.171 | 2.081    | 1.126      | 9.741          | 160.671    | 27.967 | 28.245   | 0.0159 |
| G-2        | 22.294                   | 73.241        | 1.198 | 2.121    | 1.125      | 10.510         | 176.701    | 29.020 | 29.299   | 0.0159 |
| G-2        | 24.189                   | 73.264        | 1.221 | 2.159    | 1.125      | 11.201         | 191.721    | 29.819 | 30.099   | 0.0159 |

# Annex C - City of Milton Keynes Council LLFA Response

Thank you for your enquiry. Please see our response below.

#### Flooding History

As LLFA we hold records on reported surface water, groundwater flooding and structural flood defences. Our records include the following information relevant to the proposed Site:

Lavendon - December 2020 Section 19 Report, found at - Flood investigations | Milton Keynes City Council (milton-keynes.gov.uk).

Please be aware that there may be additional flooding incidents that are not on our records. We would recommend that our Strategic Flood Risk Assessment (SFRA) is also reviewed to determine localised flood risk from other sources.

#### Internal Drainage Board/Watercourse

The Bedford Group of Drainage Boards (IDBs) operate within Milton Keynes Borough and their drainage districts can be found here - Boards Drainage District - The Bedford Group of Drainage Boards (idbs.org.uk).

The IDBs can be contacted directly to discuss any requirements they may have at contact@idbs.org.uk.

Details on the maintenance and management of watercourses in Milton Keynes can be found here - Watercourse management and consenting | Milton Keynes City Council (milton-keynes.gov.uk).

#### **Planning Requirements**

Unfortunately, the LLFA are not in a position to offer pre-application planning advice directly.

Reviews of surface water strategies or flood risk assessments should be requested via MKCC formal preapplication advice service, where a planning officer will provide their opinion and guidance on the likely outcome of your application. This can be made via email to dcadmin@Milton-keynes.gov.uk by submitting a location plan and as much information as you are able (the more information you can provide the more accurate the advice will be). The fee for pre-application for this Site would be based on the attached fee schedule with additional charges should you wish a meeting with officers (depending on the category selected and who you would like to attend). It is important to specify if you wish the LLFA to comment. Further information regarding pre-applications can be found on our website Pre-application advice | Milton Keynes Council (milton-keynes.gov.uk).

However, we have published free detailed guidance on the preparation of surface water drainage strategies (see below). This provides information on the level of detail we require depending on the type of planning application as well as common matters we may be asked. The document should be used by all developers and their consultants who wish to submit an application in Milton Keynes - Surface Water Drainage Guidance for Developers December 2022.

Further information regarding flood risk management across Milton Keynes can be found on our Flood and Water Management webpage - Flood and water management | Milton Keynes City Council (milton-keynes.gov.uk).

I trust this answers your enquiry.



ge 18 Issue-04

Flood and Water Management Officer I Flood and Water Management Team, Lead Local Flood Authority

To speak with me:

T: Call via

Team:

Milton Keynes City Council| Civic | 1 Saxon Gate East | Milton Keynes | MK9 3EJ www.milton-keynes.gov.uk

<sup>&</sup>lt;sup>i</sup> Google Maps

<sup>&</sup>quot; England | Catchment Data Explorer

iii GeoIndex (onshore) - British Geological Survey

iv MAGIC

<sup>&</sup>lt;sup>v</sup> Get flood risk information for planning in England - Flood map for planning - GOV.UK

vi Where do you want to check? - Check your long term flood risk - GOV.UK